Meta-model Pruning

نویسندگان

  • Sagar Sen
  • Naouel Moha
  • Benoit Baudry
  • Jean-Marc Jézéquel
چکیده

Large and complex meta-models such as those of Uml and its profiles are growing due to modelling and inter-operability needs of numerous stakeholders. The complexity of such meta-models has led to coining of the term meta-muddle. Individual users often exercise only a small view of a meta-muddle for tasks ranging from model creation to construction of model transformations. What is the effective meta-model that represents this view? We present a flexible meta-model pruning algorithm and tool to extract effective meta-models from a meta-muddle. We use the notion of model typing for meta-models to verify that the algorithm generates a super-type of the large meta-model representing the meta-muddle. This implies that all programs written using the effective meta-model will work for the meta-muddle hence preserving backward compatibility. All instances of the effective meta-model are also instances of the meta-muddle. We illustrate how pruning the original Uml metamodel produces different effective meta-models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Complexity Pruning of Ensemble Classifiers

In this paper we study methods that combine multiple classification models learned over separate data sets in a distributed database setting. Numerous studies posit that such approaches provide the means to efficiently scale learning to large datasets, while also boosting the accuracy of individual classifiers. These gains, however, come at the expense of an increased demand for run-time system...

متن کامل

Minimal Cost Complexity Pruning of Meta-Classifiers

Integrating multiple learned classification models (classifiers) computed over large and (physically) distributed data sets has been demonstrated as an effective approach to scaling inductive learning techniques, while also boosting the accuracy of individual classifiers. These gains, however, come at the expense of an increased demand for run-time system resources. The final ensemble meta-clas...

متن کامل

Pruning Meta-Classifiers in a Distributed Data Mining System CUCS-032-97

JAM is a powerful and portable agent-based distributed data mining system that employs metalearning techniques to integrate a number of independent classifiers (models) derived in parallel from independent and (possibly) inherently distributed databases. Although meta-learning promotes scalability and accuracy in a simple and straightforward manner, brute force meta-learning techniques can resu...

متن کامل

Pruning Classifiers in a Distributed Meta-Learning System

JAM is a powerful and portable agent-based distributed data mining system that employs meta-learning techniques to integrate a number of independent classifiers (concepts) derived in parallel from independent and (possibly) inherently distributed databases. Although metalearning promotes scalability and accuracy in a simple and straightforward manner, brute force meta-learning techniques can re...

متن کامل

Pruning Meta-Classifiers in a Distributed Data Mining System

JAM is a powerful and portable agent-based distributed data mining system that employs metalearning techniques to integrate a number of independent classifiers (models) derived in parallel from independent and (possibly) inherently distributed databases. Although meta-learning promotes scalability and accuracy in a simple and straightforward manner, brute force metalearning techniques can resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009